Atrial Fibrillation-Related Stroke: An Avoidable Burden

Working Group Recommendations

Dr Álvaro Avezum
Dante Pazzanese Institute of Cardiology, São Paulo, Brazil

Professor László Csiba
University of Debrecen, Debrecen, Hungary

Dr Jorge González-Zuelgaray
Sanatorio de la Trinidad San Isidro, Buenos Aires, Argentina

Professor Graeme J Hankey
Royal Perth Hospital, Perth, Western Australia

Dr Torsten Hoppe-Tichy
University Hospital of Heidelberg, Heidelberg, Germany

Professor Dayi Hu
Peking University’s People’s Hospital, Beijing, China

Professor Antoine Leenhardt
Paris 7 University, Paris, France

Dr Maddalena Lettino
San Matteo Hospital, Pavia, Italy

Trudie Lobban MBE
Arrhythmia Alliance; AF Association

Professor Lorenzo Mantovani
Federico II University of Naples, Naples, Italy

Rod Mitchell
Patient Advocate, Board Member

Dr Walter Reyes-Caorsi
Casa de Galicia Hospital, Montevideo, Uruguay

Professor Norio Tanahashi
Saitama Medical University, Hidaka City, Japan

Professor Byung-Woo Yoon
Seoul National University Hospital, Seoul, Korea

This booklet was made possible by Bayer HealthCare Pharmaceuticals. See reverse of title page and acknowledgements for further information.

Disclaimer: this document is not intended for distribution to individual patients.
Atrial Fibrillation-Related Stroke: An Avoidable Burden

Working Group Recommendations

The recommendations in this document are endorsed by the organizations shown below.
Action for Stroke Prevention (ASP) has been initiated and funded by Bayer HealthCare as an independent alliance of experts with the aim to increase the awareness of atrial fibrillation and the associated risk of stroke. This booklet has been produced by the ASP with the aid of financial support from Bayer HealthCare. Bayer HealthCare have also been given the opportunity to comment upon the booklet from a regulatory and compliance perspective. However, the content of this booklet has been determined, and full editorial control retained, by the authors independently of Bayer HealthCare in order to ensure the independence of the booklet and outputs of the group. The views expressed in this publication are not necessarily those of the sponsor.
Authors

Writing group

Dr Álvaro Avezum
Director, Research Division, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil

Professor László Csiba
Professor and Head of the Department of Neurology, University of Debrecen, Hungary; President of the European Society of Neurosonology and Cerebral Hemodynamics

Dr Jorge González-Zuelgaray
Director of the Center of Cardiac Arrhythmias and of the Career of Specialists in Arrhythmias and Clinical Electrophysiology, University of Buenos Aires; Chief of Service of Arrhythmias and Electrophysiology (Sanatorio de la Trinidad San Isidro, Buenos Aires, Argentina); President of Arrhythmia Alliance and AF Association, Argentina

Professor Graeme J Hankey
Head of Stroke Unit, Royal Perth Hospital, Perth, Western Australia; Clinical Professor, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia

Dr Torsten Hoppe-Tichy
Chief Pharmacist, Pharmacy Department, University Hospital of Heidelberg, Germany; President of ADKA (The German Society of Hospital Pharmacists)

Professor Dayi Hu
Chief of the Cardiology Division of Peking University’s People’s Hospital, Dean of the Medical College of Shanghai at Tongji University; Dean of the Cardiology Department of Capital University of Medical Science, Beijing, China; President of the Chinese Society of Cardiology; President of the Chinese College of Cardiovascular Physicians

Professor Antoine Leenhardt
Professor of Cardiology, Paris 7 University; Head of the Arrhythmia Department, Bichat Hospital, Paris, France; Past-President of the French Working Group of Cardiac Arrhythmias and Pacing

Dr Maddalena Lettino
Chief of the Clinical Cardiology Unit, Istituto Clinico Humanitas, Rozzano (Milano), Italy; Past-Chair, Italian Atherosclerosis, Thrombosis and Vascular Biology (ATBV) Working Group; Chair of the Italian Working Group on Acute Cardiac Care; Board member of the ESC Acute Cardiovascular Care Association

Trudie Lobban MBE
Founder and Trustee, Arrhythmia Alliance; Founder and Chief Executive Officer, AF Association

Professor Lorenzo Mantovani
Professor, Faculty of Pharmacy, Federico II University of Naples, Naples, Italy

Rod Mitchell
Patient Advocate, Board Member, European Platform for Patients’ Organisations, Science and Industry (Epposi) and the European Genetics Alliance Network (EGAN); Past Board member, International Alliance of Patients’ Organizations

Dr Walter Reyes-Caorsi
Chief, Electrophysiology Service, Casa de Galicia Hospital, Montevideo, Uruguay; Member, Continuing Medical Committee, Uruguayan Society of Cardiology; Member, Editorial Committee, Uruguayan Journal of Cardiology; Board Member, Honorary Commission for Cardiovascular Health; Director, Arrhythmia Council, South American Society of Cardiology

Professor Norio Tanahashi
Professor of Neurology, Saitama International Medical Center, Saitama Medical University, Hidaka City, Japan

Professor Byung-Woo Yoon
Department of Neurology, Seoul National University Hospital; Director of Clinical Research Center for Stroke, Korea; Current President of the Korean Society of Stroke
Atrial fibrillation-related stroke: an avoidable burden

Working group

Dr Felicita Andreotti
Certified Professor, Department of Cardiovascular Sciences, Catholic University, Rome, Italy

Dr Alastair Benbow
Executive Director, European Brain Council, (Brussels Office), Fondation Universitaire, Brussels, Belgium

Professor John Camm
Professor of Clinical Cardiology, St George’s University, London, United Kingdom

Dr Carlos Cantú
Chair, Department of Neurology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico; Professor of Stroke Program, National Autonomous University of Mexico, Mexico; Founding Member of the Mexican Stroke Association

Professor Antonio Dávalos
Director, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol, Barcelona; Associated Professor of Neurology, Universitat Autònoma de Barcelona, Barcelona, Spain

Professor Shinya Goto
Professor of Medicine, Department of Medicine (Cardiology) and the Metabolic Disease Center, and the Department of Metabolic Systems Medicine, Institute of Medical Science, Tokai University, Kanagawa, Japan

Professor Dr Werner Hacke
Professor and Chairman, Department of Neurology, University of Heidelberg, Heidelberg, Germany; Honorary President, European Stroke Organisation

Professor Michael G Hennerici
Professor and Chairman of Neurology, Department of Neurology, University of Heidelberg, Universitätsklinikum Mannheim, Germany; Chairman, European Stroke Conference

Mellanie True Hills
Founder and Chief Executive Officer, StopAfib.org and the American Foundation for Women’s Health

Professor Richard Hobbs
Professor and Head, Department of Primary Care Health Sciences, University of Oxford; National Director, NIHR School for Primary Care Research, United Kingdom; Chairman, European Primary Care Cardiovascular Society

Professor Han-Hwa Hu
Professor of Neurology, National Yang-Ming University, Taipei, Taiwan; Emeritus Chief of the Neurovascular Section, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; President of the Taiwan Stroke Association

Professor Dr Paulus Kirchhof
Chair in Cardiovascular Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Senior Consultant, Department of Cardiology and Angiology, University Hospital Münster, Germany

Eve Knight
Chief Executive and Co-founder, AntiCoagulation Europe

Joe Korner
Director of Communications, The UK Stroke Association, London, United Kingdom; Representative for the Stroke Alliance For Europe (SAFE)

Professor Dr Karl-Heinz Ladwig
Professor of Psychosomatic Medicine and Psychological Medicine, Technical University of Munich; Deputy Director of the Chronic Disease Epidemiology Department of the Institute of Epidemiology at the Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
Professor Gregory YH Lip
Consultant Cardiologist and Professor of Cardiovascular Medicine, University of Birmingham Center for Cardiovascular Sciences; Director, Haemostasis Thrombosis & Vascular Sciences Biology Unit, City Hospital, Birmingham, United Kingdom

Dr Ayrton Massaro
Past-President of Ibero-American Stroke Society; Co-chair of the 2012 World Stroke Conference, Brazil

Professor Bo Norrving
Professor of Neurology, Department of Clinical Neurosciences, Section of Neurology, Lund University, Lund, Sweden; Past-President of the World Stroke Organization (2008–2012)

Dr David KL Quek
Consultant Cardiologist, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia; President of the Malaysia Medical Association and Elected Member of the Malaysian Medical Council

Professor Dr Kui-Hian Sim
Head of the Department of Cardiology and Head of Clinical Research Centre (CRC), Sarawak General Hospital, Sarawak, Malaysia; President of the National Heart Association of Malaysia

Professor Hung-Fat Tse
Professor of Medicine, Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, China

Professor Panos Vardas
President Elect of the European Society of Cardiology; Professor of Cardiology, University of Crete; Head of Cardiology Department, Heraklion University Hospital, Crete, Greece; President, European Heart Rhythm Association; Founder member of the Hellenic Cardiovascular Research Society and the Society’s first President

Dr Xavier Viñolas
Director, Arrhythmia Unit, Hospital Sant Pau, Barcelona, Spain

Professor Shu Zhang
Professor of Medicine, Chief of Department of Cardiology, Director of Arrhythmia Center; National Center for Cardiovascular Disease, Fu Wai Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; President of Chinese Society of Pacing and Electrophysiology, Beijing, China

Acknowledgments
Support for the writing and editing of this booklet was provided by Chameleon Communications International Ltd, with funding from Bayer HealthCare. We acknowledge with thanks the contribution of Oxford PharmaGenesis™ Ltd who provided editorial and writing support for a previous report on the European Union: How Can We Avoid a Stroke Crisis? (2009), with funding from Bayer HealthCare.

The content of this booklet has been determined by the authors independently of Bayer HealthCare in order to ensure the independence of the booklet and outputs of the group.
Endorsements

<table>
<thead>
<tr>
<th>Organization</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Citizenship Network</td>
<td>www.activecitizenship.net</td>
</tr>
<tr>
<td>ADKA – German Association of Hospital Pharmacists</td>
<td>www.adka.de</td>
</tr>
<tr>
<td>“A.L.I.Ce Italia Onlus Associazione per la Lotta all’Ictus Cerebrale”</td>
<td>www.aliceitalia.org</td>
</tr>
<tr>
<td>ALT Onlus – Associazione per la Lotta alla Trombosi e alle malattie cardiovascolari</td>
<td>www.trombosi.org</td>
</tr>
<tr>
<td>ANA-Aritmie</td>
<td>www.anaaritmie.org</td>
</tr>
<tr>
<td>AntiCoagulation Europe</td>
<td>www.anticoagulationeurope.org</td>
</tr>
<tr>
<td>Arrhythmia Alliance – International</td>
<td>www.aa-international.org</td>
</tr>
<tr>
<td>Arrhythmia Alliance – the Heart Rhythm Charity</td>
<td>www.arrhythmiaalliance.org.uk</td>
</tr>
<tr>
<td>Arrhythmia Alliance Czech Republic</td>
<td>www.aa-cz.eu</td>
</tr>
<tr>
<td>Arrhythmia Alliance Italy</td>
<td>www.ana-aritmie.org</td>
</tr>
<tr>
<td>Arrhythmia Alliance Portugal</td>
<td>www.aa-pt.eu</td>
</tr>
<tr>
<td>Arrhythmia Alliance Spain</td>
<td>www.aa-es.eu</td>
</tr>
<tr>
<td>Arrhythmia Alliance Sweden</td>
<td>www.aa-se.eu</td>
</tr>
<tr>
<td>ATBV – Gruppo di studio Aterosclerosi, Trombosi, Biologia Vascolare</td>
<td>www.atbv.org</td>
</tr>
<tr>
<td>AF Association – International</td>
<td>www.afa-international.org</td>
</tr>
<tr>
<td>AF Association Bulgaria</td>
<td>www.afa-bg.eu</td>
</tr>
<tr>
<td>AF Association Canada</td>
<td>www.afa-ca.org</td>
</tr>
<tr>
<td>AF Association Denmark</td>
<td>www.afa-dk.eu</td>
</tr>
<tr>
<td>AF Association France</td>
<td>www.afa-fr.eu</td>
</tr>
<tr>
<td>AF Association Germany</td>
<td>www.afa-de.eu</td>
</tr>
<tr>
<td>AF Association Greece</td>
<td>www.afa-gr.eu</td>
</tr>
<tr>
<td>AF Association Hungary</td>
<td>www.afa-hu.eu</td>
</tr>
<tr>
<td>AF Association Italy</td>
<td>www.afa-it.eu</td>
</tr>
<tr>
<td>AF Association Norway</td>
<td>www.afa-no.eu</td>
</tr>
<tr>
<td>AF Association Poland</td>
<td>www.afa-pl.eu</td>
</tr>
<tr>
<td>AF Association Portugal</td>
<td>www.afa-pt.eu</td>
</tr>
<tr>
<td>AF Association Russia</td>
<td>www.afa-ru.eu</td>
</tr>
<tr>
<td>AF Association Spain</td>
<td>www.afa-es.eu</td>
</tr>
<tr>
<td>AF Association Sweden</td>
<td>www.afa-se.eu</td>
</tr>
<tr>
<td>AF Association Turkey</td>
<td>www.afa-tr.org</td>
</tr>
<tr>
<td>AF Association UK</td>
<td>www.atrialfibrillation.org.uk</td>
</tr>
<tr>
<td>Bulgaria National Patient Organisation</td>
<td>www.npo.bg</td>
</tr>
<tr>
<td>China Committee of Cardio-Cerebral-Vascular Diseases of GSC</td>
<td>www.cscnet.org.cn</td>
</tr>
<tr>
<td>Chinese Society of Cardiology</td>
<td>www.ecas-heartrhythm.org</td>
</tr>
</tbody>
</table>
ESZME – Hungarian Association for Stroke Prevention
European Brain Council
European Heart Rhythm Association (EHRA)
European Primary Care Cardiovascular Society
European Society of Neurosonology and Cerebral Hemodynamics
European Stroke Conference
European Stroke Organisation
Feasan – Federación Española de Asociaciones de Anticoagulados
Federación Española de Ictus
Foundation for Development of Electrophysiology
German Competence Network on Atrial Fibrillation
Heart Association of Bulgaria
Hellenic Cardiological Society
Hellenic Cardiovascular Research Society
InterAmerican Heart Foundation
National Stroke League of Hungary
Norwegian Association for Stroke Survivors
Open Interaction Association
Par Sirdi
SAFE
Stroke Association
Stroke Association Serbia
StopAfib.org
Stroke Foundation of Poland
SZÍV SN
The International FH Foundation
World Heart Federation
World Stroke Organization (WSO)

www.eszme.hu
www.europeanbraincouncil.org
www.escardio.org/EHRA
www.epccs.eu
www.esnch.org
www.eurostroke.eu
www.eso-stroke.org
www.anticoagulados.info
www.ictusfederacion.es
www.sercedlaarytmii.pl
www.kompetenznetzvorhofflimmern.de
www.hcs.gr
www.cardioresearch.net
www.interamericanheart.org
www.strokeliga.blogspot.de
www.slagrammede.org
www.parsirdi.lv
www.safestroke.org
www.stroke.org.uk
www.mozdaniudar.co.rs
www.stopafib.org
www.fum.info.pl
www.szivsn.hu
www.fh-foundation.org
www.world-heart-federation.org
www.world-stroke.org
Atrial fibrillation-related stroke: an avoidable burden
Atrial fibrillation-related stroke: an avoidable burden

- Atrial fibrillation (AF) – an abnormal heart rhythm – increases the risk of stroke by almost five times compared with a normal heart rhythm (sinus rhythm)\(^1\)
- AF is the most common heart rhythm disorder and occurs with increasing frequency as people get older.\(^2\) AF has been estimated to affect 0.1–4.0% of the population,\(^2\)\(^–\)\(^4\) depending on the country
 - More than 23 million people are affected by AF in Europe, China and the US combined\(^4\)\(^–\)\(^6\)
- Approximately 15 million people worldwide suffer a stroke each year.\(^7\) Of this number, approximately one-third die and another third are left permanently disabled. AF is associated with at least 15% of all strokes\(^8\)
- AF-related strokes are more severe than those not related to AF; they are associated with an increased likelihood of permanent disability requiring institutional care, and also result in greater short-and long-term mortality\(^9\)
- The annual cost of stroke is approximately €64 billion in Europe\(^10\) and $34 billion in the US.\(^11\) The cost of AF-related stroke is substantially higher than the cost of stroke in patients without AF\(^12\)

The Berlin Acute Stroke Study showed that the average direct costs over the first year after hospitalization for stroke were more than 30% higher for patients with AF (€11 799) than for patients without AF (€8 817)\(^12\)

- Assuming that 15% of strokes are caused by AF and considering that AF-related strokes are generally more severe than strokes unrelated to AF, the cost of AF-related stroke could be at least €10 billion in Europe and $5 billion in the US each year
- AF-related stroke is preventable, but many patients currently do not receive optimal prevention therapy. This booklet discusses which patients are not receiving appropriate therapy and the reasons for this. Actions for key parties are outlined to ensure that in future all patients with AF receive optimal therapy to prevent stroke

Atrial fibrillation-related stroke is preventable

- A stroke occurs when a blood vessel becomes blocked and the supply of blood to the brain becomes interrupted (ischaemic stroke), or when blood from a ruptured vessel leaks into the brain (haemorrhagic stroke). Both can cause significant brain damage
- AF-related strokes are caused by blood clots that form within the heart and then travel to the brain. Anticoagulant drugs can prevent the formation of blood clots and, therefore, can reduce the risk of AF-related stroke
- Vitamin K antagonists (VKAs; such as warfarin, acenocoumarol and phenprocoumon) are oral anticoagulant (OAC) drugs that reduce the risk of stroke in patients with AF:\(^13\)
 - By 64% compared with placebo
 - By 38% compared with aspirin (an antiplatelet agent)

For many patients, optimal anticoagulation is not possible

- Although VKAs can be effective, the anticoagulation effects of these agents are unpredictable, because of the indirect way in which they prevent clotting, and because they interact with many foods and drugs\(^14\)
- Under similar conditions, the amount of anticoagulation a VKA provides varies substantially between patients, and in the same patient on a daily basis, depending on diet, medications and co-existing medical conditions.\(^14\) This means that:
 - The dose of a VKA must be tailored to each and every patient; a fixed-dose regimen is not possible
 - Patients need regular monitoring to ensure that the correct level of anticoagulation is achieved. This is done by measuring the ‘international normalized ratio’ (INR)
 - The dose of VKA must be adjusted to ensure that patients remain in the recommended safe and effective therapeutic INR range of 2.0–3.0
- An INR <2.0 is associated with increased risk of ischaemic stroke, and an INR >3.0 diminishes the ability of blood to clot, thus placing patients at risk of anticoagulant-related bleeding, including life-threatening events such as haemorrhagic stroke (Figure 1)\(^15\)
Atrial fibrillation-related stroke: an avoidable burden

Figure 1. The INR should be maintained in the range 2.0–3.0 for patients receiving warfarin.

![Graph A: Ischaemic stroke](image)

![Graph B: Haemorrhagic stroke](image)

(A) A patient is at increased risk of an ischaemic stroke (resulting from a blood clot) at INRs below 2.0, or (B) bleeding such as haemorrhagic stroke (bleeding from a vessel in the brain) at INRs above 3.0.\(^15\)

Adapted with permission from *Eur J Intern Med*, vol. 20, Amouyel et al. INR variability in atrial fibrillation: a risk model for cerebrovascular events, pp 63–69, copyright 2009, with permission from Elsevier.\(^15\)

INR, international normalized ratio.

Figure 2. Cumulative stroke recurrence rate in non-anticoagulated patients with atrial fibrillation or in normal sinus rhythm.\(^19\)

![Graph C: Stroke recurrence rate](image)

Adapted from *Am J Med*, vol. 114, Penado et al. Atrial fibrillation as a risk factor for stroke recurrence, 206–211, copyright 2003, with permission from Elsevier.\(^19\)

Patients for whom VKAs often fail to provide adequate prevention

- **Patients with AF who have previously had a stroke (ischaemic or haemorrhagic)**
 - Prior stroke is a strong additional risk factor for stroke in patients with AF, increasing the risk by 2.5-fold compared with patients with AF and no history of stroke.\(^18\) Furthermore, stroke patients with AF have more than double the risk of recurrent stroke compared with stroke patients without AF (Figure 2)\(^19\)
 - Prior stroke also increases the risk of anticoagulant-related bleeding,\(^20\) which complicates the management of stroke prevention in this patient group

- **Prior stroke also increases the risk of anticoagulant-related bleeding,\(^20\) which complicates the management of stroke prevention in this patient group**

- **It is of great concern that most studies worldwide report guideline-recommended anticoagulation rates below 60% in this patient group, adding considerably to the clinical and cost burden of AF-related stroke (Figure 3)\(^21\)**

- **This patient group is in particular need of effective and safer therapy options**

- **Most recurrent AF-related strokes are severe\(^19\) and, compared with a first stroke, are more likely to be fatal.\(^22\) This further emphasizes the need for improved treatment options for the prevention of AF-related stroke in this group of patients**

Elderly patients with AF

- **AF affects 6–9% of people over 80 years of age.\(^2,3\)** Furthermore, it is estimated that approximately 4% of 85-year-olds may have undiagnosed AF and, therefore, are unknowingly at risk of stroke\(^25\)**

Stroke prevention needs to be improved for all patients with AF
Figure 3. Hypothetical illustration of the excess strokes and economic burden resulting from under-treatment of patients with AF and prior stroke in Europe.4,12,21,23,24

Figure 4. The rate of major bleeding events in patients aged 80 years or older with AF treated with vitamin K antagonists compared with younger patients with AF.26

- These fears are often misplaced; evidence from elderly patients with AF receiving VKA therapy shows that the risk of a serious bleeding event from falling is so small that the benefits of therapy far outweigh the risk.29 It has been reported that anticoagulation with a VKA reduced the incidence of AF-related stroke in patients aged 75 years or older without an increased risk of bleeding, compared with patients taking aspirin10.

- If the risk of serious bleeding, such as intracranial haemorrhage (including haemorrhagic stroke), caused by therapy is weighed against the benefit of stroke risk reduction, the overall benefit of VKA therapy actually increases with age (Figure 5).24

- Despite the benefits of anticoagulation outweighing the risks in elderly patients with AF, many physicians under-prescribe effective therapy for the prevention of AF-related stroke.

- There is a clear need for an OAC that does not require regular coagulation monitoring and carries a lower risk of intracranial haemorrhage.

Patients with poor INR control

- As shown in Figure 1, an INR <2.0 is associated with increased risk of ischaemic stroke and an INR >3.0 places patients at risk of anticoagulant-related bleeding.15 Therefore, it is important that a patient spends as much time as possible within the target INR range (2.0–3.0).
Figure 5. The net clinical benefit of warfarin by age.24

<table>
<thead>
<tr>
<th>Age (years)</th>
<th><65</th>
<th>65–74</th>
<th>75–84</th>
<th>>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worse with warfarin</td>
<td>-0.65</td>
<td>-0.37</td>
<td>-0.25</td>
<td>0.11</td>
</tr>
<tr>
<td>Better with warfarin</td>
<td>-0.08</td>
<td>-0.40</td>
<td>1.00</td>
<td>2.34</td>
</tr>
<tr>
<td>Net clinical benefit (events prevented per 100 person-years)</td>
<td>0</td>
<td>3.30</td>
<td>1.40</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Net clinical benefit = (annual thromboembolism rate off warfarin – annual thromboembolism rate on warfarin) – 1.5 x (annual intracranial haemorrhage rate on warfarin – annual intracranial haemorrhage rate off warfarin).

Adapted from Singer DE, Chang Y, Fang MC, et al. The net clinical benefit of warfarin anticoagulation in atrial fibrillation. Ann Intern Med. 2009 Sep 1;151 with permission from the American College of Physicians.24

◆ Many elderly patients with AF have one or more co-existing medical conditions for which they take many drugs that may affect the amount of time they are able to remain within the therapeutic INR range.26 Other factors that affect time spent in therapeutic range include hospitalizations and dementia17

◆ On average, patients on VKAs may be in the therapeutic range only about 60% of the time31
 • The quality of anticoagulation care varies considerably. The average amount of time patients spend with an INR within the therapeutic range varies between countries, and may also depend on whether VKAs are managed in specialized clinics or elsewhere31

◆ Depending on the country, up to one-third of patients spend less than half of their time in the therapeutic INR range.31 It has also been suggested that only 10% of patients receiving VKAs are able to maintain a stable INR within the therapeutic range over the course of 1 year12

◆ Patients with poor INR control often decide to discontinue VKA therapy altogether,33 leaving them at risk of AF-related stroke

◆ The substantial number of patients with poor INR control highlights the need for more manageable therapeutic options to reduce the burden of AF-related stroke

Patients who discontinue VKA therapy

◆ Within 1 year of initiation of VKA therapy, about one-quarter of patients discontinue therapy.33 The risk of AF-related stroke increases by 65% when a patient stops taking VKA therapy13

◆ This highlights the urgent need for alternative therapeutic options to reduce the burden of AF-related stroke in patients who are either unable or unwilling to take VKAs

Suboptimal anticoagulation leads to avoidable strokes and increases costs

◆ Despite being effective, VKAs are underused in practice because of their disadvantages. A recent global registry collecting real-life clinical data24 showed that:
 • Only about 50% of patients with AF at risk of stroke, and for whom guidelines recommended OAC therapy, actually received such therapy
 • Approximately 25% of the patients who should have received an anticoagulant received aspirin, which is not as effective as OAC therapy in reducing the risk of AF related stroke13

◆ Of concern, approximately 70% of patients with known AF who had an ischaemic stroke were not receiving anticoagulant therapy to prevent AF-related stroke35–37

◆ Of 1000 patients with AF at age 70 years, it is predicted that if all patients commence VKA therapy and have perfect adherence to therapy (i.e. only discontinuing for bleeding events) with perfect INR control, these patients would experience about 500 ischaemic strokes collectively within their remaining lifetime (including both primary and recurrent strokes).38
 • However, this does not represent the ‘real world’ situation. When accounting for ‘real-world’ INR control and VKA adherence, based on clinical practice observed in the US, it is predicted that there would be almost 500 additional strokes, collectively, in the same 1000 patients (984 ischaemic strokes in total)
 • If ‘real-world’ prescription of aspirin or nothing (instead of VKAs) to VKA-eligible patients is also considered, in addition to ‘real-world’ INR control and VKA adherence, there could be as many as 670 additional strokes overall in the same 1000 patients (about 1170 ischaemic strokes in total)

◆ The remaining lifetime cost, including direct healthcare costs of clinical events such as stroke or bleeding, costs of routine INR monitoring and of long-term care, for one of these patients on VKAs is $68 039 with perfect INR control versus $84 518 with ‘real-world’ INR control, and $87 248 if ‘real-world’ prescribing patterns and INR control are considered
Prevention of AF-related stroke needs to be improved for all patients; new options are urgently needed to increase the proportion of patients with AF who receive appropriate stroke prevention therapy

A solution: more therapy options to prevent more AF-related strokes

- Non-VKA OACs have been developed to overcome some of the limitations associated with VKAs. These newer agents can provide an important alternative for those patients unable to achieve adequate prevention of AF-related stroke with VKAs
- The non-VKA OACs rivaroxaban (Xarelto®, Bayer HealthCare) and dabigatran etexilate (Pradaxa®, Boehringer Ingelheim) are currently approved for use for the prevention of AF-related stroke, and have reimbursement approval, in many countries globally, including the US and Europe. Approval of a third non-VKA OAC, apixaban (Eliquis®, Pfizer), is also expected
- In contrast to VKAs, non-VKA OACs:39–42
 - Have a predictable anticoagulation effect: a given dose always achieves the same degree of anticoagulation
 - Have few food or drug interactions
 - Are taken as fixed once-daily (rivaroxaban) or twice-daily (dabigatran, apixaban) doses
 - Require no routine coagulation monitoring
- The non-VKA OACs rivaroxaban, dabigatran and apixaban have been tested in three large-scale global trials (ROCKET AF, RE-LY and ARISTOTLE, respectively) and were found to be at least as effective as VKAs for stroke prevention in patients with AF, without increasing major bleeding43–45
- There were significant increases in gastrointestinal bleeding, compared with VKA therapy, with rivaroxaban and the higher dabigatran dose (150 mg twice daily), but not with apixaban or the lower dabigatran dose (110 mg twice daily)43–45
- Importantly though, compared with warfarin, the non-VKA OACs were all associated with significant reductions in serious bleeding events of particular concern:43–45
 - All significantly reduced intracranial bleeding – the most feared bleeding event
- Rivaroxaban and apixaban reduced fatal bleeding, which reached statistical significance for rivaroxaban, and dabigatran significantly reduced life-threatening bleeding
- In addition, the efficacy and safety profiles of the non-VKA OACs, compared with warfarin, were consistent in patients with prior stroke compared with the overall trial populations46–48
- Furthermore, properly managed non-VKA OACs have demonstrated efficacy and an acceptable safety profile in patients with moderate renal impairment, thereby providing an additional option for the prevention of AF-related stroke in this patient group49–51
- Non-VKA OACs can, therefore, offer:
 - Treatment for patients who would be otherwise unlikely to receive any therapy at all
 - An option for patients discontinuing VKAs
 - No concerns over INR control with regard to monitoring or staying within a narrow therapeutic range
 - Simplified patient management with fixed daily dosing and no requirement for periodic dose adjustment
 - Markedly lower risk of intracranial haemorrhage and fatal bleeding
- Studies in the UK, Canada and the US have concluded that, overall, the non-VKA OACs are cost-effective alternatives to VKAs at the thresholds implemented in these countries, particularly when a patient does not have good INR control on VKAs52–56
- The cost of routine monitoring in patients taking VKAs can be substantial, both to healthcare providers57 and to patients and their carers.58 Because the non-VKA OACs do not require routine coagulation monitoring, expenditure associated with monitoring could be redirected to patient and physician education to improve adherence to therapy and patient management
- More importantly, the availability of the non-VKA OACs will hopefully increase the proportion of patients with AF receiving therapy to prevent AF-related stroke, thereby reducing the number of AF-related strokes and the huge clinical and economic burden that results
Call to action: how can we prevent more atrial fibrillation-related strokes?

◆ The availability of non-VKA OACs means that physicians now have more therapeutic choices, allowing a more patient-centred approach to therapy to prevent AF-related stroke. More treatment options could mean that more eligible patients with AF will receive the necessary therapy for stroke prevention. Prevention of AF-related stroke needs to be improved for all patients with AF, as well as the groups specifically discussed in this booklet.

◆ Managing VKAs is challenging, especially for certain patients. Physicians need to be informed as to how the non-VKA OACs afford an opportunity to address those challenges. Physicians must also be educated as to the optimal management of the non-VKA OACs, and responsible prescribing of these agents.

◆ Patient education is also needed to ensure patients know why they are taking an anticoagulant and the importance of complying with therapy. Patients need to be made aware of the educational materials available to them from patient advocacy groups such as the AF Association and StopAfib.org59,60.

◆ The critical challenge is for key parties – healthcare professionals, policy-makers, medical societies, patient advocacy groups and industry alike – to work together to ensure that all patients with AF at risk of stroke receive optimal therapy for the prevention of AF-related stroke.

Actions for policy-makers

◆ Improve organizational infrastructure to facilitate delivery of novel therapeutics.

◆ Ensure equal and timely access to the best available care (such as anticoagulation clinics and newer therapies) for all patients with AF, regardless of where they live or their background.

◆ Ensure that prevention of AF-related stroke is addressed in national healthcare plans and that AF is recognized as a serious and significant risk factor for stroke.

Actions for medical societies and healthcare professionals

◆ Maintain a good working knowledge of the most recent clinical guidelines and educate practising physicians to help ensure that patients with AF receive the best possible care available to them61-63.

◆ Inform colleagues in the healthcare professions of the importance of diagnostic checks for AF and of the benefit–risk of anticoagulation in patients with AF.

◆ Ensure colleagues are aware of advances in the development of new therapeutic options, including the new non-VKA OACs, and of their potential benefits.

◆ Promote training for colleagues in the healthcare professions on the appropriate use of approved non-VKA OACs.

◆ Educate patients on why they are receiving anticoagulant treatment and the importance of taking their anticoagulation therapy as prescribed.

◆ Ensure that healthcare payers understand the clinical and economic advantages of having access to new, alternative therapeutic options and how this will help to reduce the number of at-risk patients receiving sub-optimal treatment, thereby increasing prevention of AF-related stroke.

Actions for patient advocacy groups

◆ Help patients to understand the benefits and risks of different therapies and to make informed choices regarding their own therapy. In addition, help patients to understand why they always need to take their therapy according to the prescribed schedule.

◆ Ensure healthcare payers not only consider robust clinical data but also listen to the patient voice to ensure their decisions reflect patient need.

AF-related stroke is a major burden that will continue to grow, and urgent action to tackle the problem is needed. However, the solution is in our hands – improved treatment options (such as approved non-VKA OACs) will allow us to limit dramatically the impact of this devastating but preventable condition.
References

Atrial fibrillation-related stroke: an avoidable burden

Conflicts of Interest

Dr Felicita Andreotti
Speaker/consultant: AstraZeneca, Bayer, BMS-Pfizer, Daiichi Sankyo, Eli Lilly

Professor Shinya Goto
Research grants: Sanofi-Aventis, Otsuka, Boehringer Ingelheim, Daiichi Sankyo, Honoraria: Sanofi-Aventis, AstraZeneca, Eisai, Otsuka, Bayer, Novartis, Astellas, Pfizer, Medtrons-Japan, Tanabe-Mitsubishi, Takeda, Daiichi Sankyo, Mochida, MSD

Dr Álvaro Avezum

Professor Dr Werner Hacke
Consultant: Boehringer Ingelheim, Bayer. Speaker: Boehringer Ingelheim, Bayer. Research support: Boehringer Ingelheim, unrestricted grant for ECASS 4 (an IIT)

Dr Alastair Benbow
The European Brain Council is a not for profit organisation which receives core funding from its members including scientific societies, patient groups and the pharmaceutical and device industries. It also receives specific project funding from EU institutions and industry

Professor John Camm
Advisor/speaker: AstraZeneca, ChanRX, Gilead, Merck, Menarini, Otsuka, Sanofi, Servier, Xention, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi, Pfizer, Boston Scientific, Biotronik, Medtronic, St. Jude Medical, Actelion, GlaxoSmithKline, InfoBionic, Incarda, Johnson & Johnson, Mitsubishi, Novartis, Takeda

Professor Michael G Hennerici
None

Professor Richard Hobbs
Speaker fees/sponsorship: AstraZeneca, Bayer, Boehringer Ingelheim, Medtronic, Merck, Novartis, Pfizer, Roche

Dr Carlos Cantú
Advisory board member: Bayer Co. Speaker: Ferrer, Bayer Co.

Professor Richard Hobbs
Speaker fees/sponsorship: AstraZeneca, Bayer, Boehringer Ingelheim, Medtronic, Merck, Novartis, Pfizer, Roche

Professor László Csiba
None

Professor Antonio Dávalos
Consultant: Bayer, Boehringer Ingelheim

Professor Dayi Hu
None

Dr Jorge Gonzalez-Zuegaray
Speaker: Bayer, Medtronic

Professor Han-Hwa Hu
None

Dr Torsten Hoppe-Tichy
None

Mellanie True Hills
None

Professor Graeme J Hankey
Honoraria: Executive Committees – AMADEUS (Sanofi-Aventis), ROCKET AF (Johnson & Johnson), BOREALIS (Sanofi-Aventis); Steering Committee – TRA 20P TIMI 50; Stroke Outcome Adjudication Committees – RE-LY, AVERROES. Speaker/Consultant: Bayer, Boehringer Ingelheim, Pfizer Australia

Professor Michael G Hennerici
None

Mellanie True Hills
None

Professor Richard Hobbs
Speaker fees/sponsorship: AstraZeneca, Bayer, Boehringer Ingelheim, Medtronic, Merck, Novartis, Pfizer, Roche

Dr Torsten Hoppe-Tichy
None

Professor Dayi Hu
None

Professor Han-Hwa Hu
None
Atrial fibrillation-related stroke: an avoidable burden

Professor Dr Paulus Kirchhof
Consulting fees/honoraria: 3M Medica, MEDA Pharma, AstraZeneca, Bayer Healthcare, Biosense Webster, Boehringer Ingelheim, Daiichi Sankyo, German Cardiac Society, MEDA Pharma, Medtronic, Merck, MSD, Otsuka Pharma, Pfizer/BMS, Sanofi, Servier, Siemens, TAKEDA. Research grants: 3M Medica/MEDA Pharma, Cardiovascular Therapeutics, Medtronic, OMRON, Sanofi, St. Jude Medical, German Federal Ministry for Education and Research (BMBF), Fondation Leducq, German Research Foundation (DFG), European Union (EU). Travel support: ESC, EHRA, AFNET

Dr Eve Knight
None

Dr Joe Korner
None

Professor Dr Karl-Heinz Ladwig
None

Professor Antoine Leenhardt
Board member/conference speaker: Sanofi, Bayer, Daiichi Sankyo, Boehringer Ingelheim, Meda Pharma, Pfizer, MSD, St. Jude Medical, Boston, Servier

Dr Maddalena Lettino
Speaker: AstraZeneca, BMS, Boehringer, Eli Lilly, Daiichi Sankyo, Bayer, Pfizer, The Medicines Company. Advisory board member: Eli Lilly, The Medicines Company, BMS, Pfizer, MSD

Professor Gregory YH Lip
Consultant: Bayer, Astellas, Merck, Sanofi, BMS/Pfizer, Daiichi Sankyo, Biotronik, Portola, Boehringer Ingelheim. Speakers bureau: Bayer, BMS/Pfizer, Boehringer Ingelheim, Sanofi-Aventis

Trudie Lobban MBE
None

Professor Lorenzo Mantovani
Research grants: Bayer Research, Boehringer Ingelheim, Pfizer, Bristol-Myers Squibb. Consultant/Advisory Board member: Bayer

Dr Ayrton Massaro
None

Rod Mitchell
None disclosed

Professor Bo Norrving
Advisor/consultant: PhotoThera, SERVIER, SYGNIS Pharma AG. Speaker/member of a speakers bureau: Allergan, Bayer Healthcare Pharmaceuticals. Boehringer Ingelheim Pharmaceuticals

Dr David KL Quek
None

Dr Walter Reyes-Caorsi
Advisory Board member: Bayer Uruguay S.A. Speaker: Bayer Uruguay

Professor Dr Kui-Hian Sim
Ongoing clinical trial and Investigator fees: Sanofi, Roche, Eli Lily

Professor Norio Tanahashi
None

Professor Hung-Fat Tse
Advisor/consultant: Bayer Schering Pharma, Boehringer Ingelheim Pharmaceuticals, Sanofi-Aventis, St. Jude Medical, Cordis Corporation, Medtronic, GlaxoSmithKline, Merck Sharp & Dohme Corp

Professor Panos Vardas
Consultant/honoraria: Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Medtronic, Menarini, Servier

Dr Xavier Viñolas
Consultant: Bayer, Medtronic, St. Jude Medical, Boston Scientific

Professor Byung-Woo Yoon
None

Professor Shu Zhang
None disclosed